Comment on: Quantum dynamics via mobile basis sets: The Dirac variational principle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on ‘‘Correlation Quantum Dynamics

In a recent Letter, Hu et al. [1] used the timedependent–wave-packet method to calculate the kinetic energy distribution of the D ions of D2 molecules by intense femtosecond laser pulses. Their theoretical results are in surprisingly good agreement with the experimental data reported by Niikura et al. [2]. Their conclusion, that the D ions came from the recollision induced dissociation between ...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

Symbolic Dynamics and the Discrete Variational Principle

We show how to construct symbolic dynamics for the class of 2d-dimensional twist mappings generated by piecewise strictly convex/concave generating functions. The method is constructive and gives an eecient way to nd all periodic orbits of these high dimensional symplectic mappings. It is illustrated with the cardioid and the stadium billiard.

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

On the Variational Principle

The variational principle states that if a differentiable functional F attains its minimum at some point zi, then F’(C) = 0; it has proved a valuable tool for studying partial differential equations. This paper shows that if a differentiable function F has a finite lower bound (although it need not attain it), then, for every E > 0, there exists some point u( where 11 F’(uJj* < l , i.e., its de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 1992

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.463729